HW Config

HW Config is where the hardware configuration of the SIMATIC Station (AS) is made.

To open HW Config, double-click on AS > Hardware.

AS_RecPrep

Rack 0 UR1 Principal

Slots

1 – PS 407 20A

4 – CPU 416-3 416-XL04-0AB0 V4.1.0

X2 – DP

6 – CP 443-1 443-1EX11-0XE0 V2.6

X1 – 192.168.0.1

7 – CP 443-5 Ext 443-5DX04-0XE0 V6.6

8 – AI 8x13Bit 431 1KF00-0AB0

9 – AI 8x13Bit 431 1KF00-0AB0

10 – AI 8x13Bit 431 1KF00-0AB0

11 – AI 8x13Bit 431 1KF00-0AB0

12 – AI 8x13Bit 431 1KF00-0AB0

13 – AI 8x13Bit 431 1KF00-0AB0

14 – AO 8x13Bit 432 1HFOC-0AB0

15 – AO 8x13Bit 432 1HFOC-0AB0

16 – AO 8x13Bit 432 1HFOC-0AB0

17 – AO 8x13Bit 432 1HFOC-0AB0

18 - IM460-1 460-1BA01-0AB0

Rack 1 ER1 Extension

Slots

1 – DI16x24..60V 421-7DH00-0ABO

2 – DI16x24..60V 421-7DH00-0ABO

3 – DI16x24..60V 421-7DH00-0ABO

4 – DI16x24..60V 421-7DH00-0ABO

5 – DI16x24..60V 421-7DH00-0ABO

6 – DI16x24..60V 421-7DH00-0ABO

7 – AI 8x13Bit 431 1KF00-0AB0

8 – AI 8x13Bit 431 1KF00-0AB0

9 – AI 8x13Bit 431 1KF00-0AB0

10 – AI 8x13Bit 431 1KF00-0AB0

11 – AI 8x13Bit 431 1KF00-0AB0

12 – Empty

13 – Empty

14 – DI16x24..60V 421-7DH00-0ABO

15 – DI16x24..60V 421-7DH00-0ABO

16 – Empty

17 – Empty

18 - IM461-1 461-1BA01-0AA0

Rack 2 ER2 Extension

Slots

1 – DI16x24..60V 421-7DH00-0ABO

2 – DI16x24..60V 421-7DH00-0ABO

3 – DI16x24..60V 421-7DH00-0ABO

4 – DI16x24..60V 421-7DH00-0ABO

5 – DI16x24..60V 421-7DH00-0ABO

6 – DI16x24..60V 421-7DH00-0ABO

7 – DI16x24..60V 421-7DH00-0ABO

8 – DO16xUC24 422-1BDH00-0AAO

9 – DO16xUC24 422-1BDH00-0AAO

10 – DO16xUC24 422-1BDH00-0AAO

11 – DO16xUC24 422-1BDH00-0AAO

12 – DI16x24..60V 421-7DH00-0ABO

13 – AI 8x13Bit 431 1KF00-0AB0

14 – DI16x24..60V 421-7DH00-0ABO

15 – AI 8x13Bit 431 1KF00-0AB0

16 – Empty

17 – Empty

18 - IM461-1 461-1BA01-0AA0





• In the catalog, choose UR1 18 slots 6ES7 400-1TA00-0AA0 rack (Profile Standard > SIMATIC 400\RACK-400) and insert into the hardware (double-click on the item in the catalog).



• Insert PS 407 20A 6ES7 407-0RA01-0AA0 power supply in rack 0 slot 1 (catalog - Profile Standard > SIMATIC 400\PS-400\Standard PS-400). Click with the mouse on the position in the rack to insert source (rack 0 slot1). Then double-click on the catalog item to be inserted.



• Insert CPU 416-3 6ES7 416-3XL04-0AB0 in rack 0 slot 4 (catalog - Profile Standard > SIMATIC 400\CPU-400\CPU 400\CPU 416-3 DP\6ES7 416-3XL04-0AB0). Click with the mouse on the position in the rack to insert (rack 0 slot 4). Then double-click on the catalog item to be inserted (V4.1).



• Create PROFIBUS(1) subnet. Click on New button.



On the Network Settings tab, configure the Profibus network with Transmission Rate 1.5 Mbps and Profile DP. The Profibus address of the CPU on the network is 2.



Click on OK.





• Insert CP 443-1 6GK7 443-1EX11-0XE0 in rack 0 slot 6 (catalog - Profile Standard > SIMATIC 400\CP-400\Industrial Ethernet\CP 443-1\6GK7 443-1EX11-0XE0). Click with the mouse on the position in the rack to insert (rack 0 slot6). Then double-click on the catalog item to be inserted (V2.6).



• Choose IP Address of the Ethernet interface R0/S6 of the CP443-1 - IP 192.168.0.1 and Mask 255.255.255.0.

• Create Plantbus subnet.



• Choose Plantbus subnet for CP 443-1.





• Insert CP 443-5 Ext 6GK7 443-5DX04-0XE0 in rack 0 slot 7 (catalog - Profile Standard > SIMATIC 400\CP-400\PROFIBUS\CP 443-5 Extended\6GK7 443-5DX04-0XE0). Click with the mouse on the position in the rack to insert (rack 0 slot7). Then double-click on the catalog item to be inserted.



• Create Profibus_RecPrep subnet. Click on New button.



• On the Network Settings tab, configure the Profibus network with Transmission Rate 1.5 Mbps and Profile DP. The Profibus address of the CPU on the network is 2.



• Click on OK.





• In HW Config, open CPU416-3 properties. Right-click on the CPU and select Object Properties menu item.



• Select Cyclic Interrupts tab and define OB32 with PIP2 Process Image Partition PIP2 and OB33 with PIP3 Process Image Partition.



• Insert AI-400 6ES7 431-1KF00-0AB0 analog input module in rack 0 slot 8 (catalog - Profile Standard > SIMATIC 400\SM-400\AI-400\AI8x13Bit). Click with the mouse on the position in the rack (rack 0 slot8). Then double-click on the catalog item to be inserted.



• Set Inputs: Start = 512; End=527; Process Image = PIP2. There are 2 bytes (1 word) for each analog input.



• Set all 8 analog inputs to 4DMU current (4-wire transmitter), Measuring Range = 4..20 mA and Interference Frequency = 60 Hz.



Note: PIP Process Image Partition will be handled with Organization Block (OB).

• Insert AI-400 6ES7 431-1KF00-0AB0 analog input module in rack 0 slot 9 (catalog - Profile Standard > SIMATIC 400\SM-400\AI-400\AI8x13Bit). Enter Inputs: Start = 528; End = 543; Process Image = PIP2. Set all 8 analog inputs to 4DMU current (4-wire transmitter), Measuring Range = 4..20 mA and Interference Frequency = 60 Hz.

• Insert AI-400 6ES7 431-1KF00-0AB0 analog input module in rack 0 slot 10 (catalog - Profile Standard > SIMATIC 400\SM-400\AI-400\AI8x13Bit). Enter Inputs: Start = 544; End = 559; Process Image = PIP2. Set all 8 analog inputs to 4DMU current (4-wire transmitter), Measuring Range = 4..20 mA and Interference Frequency = 60 Hz.

• Insert AI-400 6ES7 431-1KF00-0AB0 analog input module in rack 0 slot 11 (catalog - Profile Standard > SIMATIC 400\SM-400\AI-400\AI8x13Bit). Enter Inputs: Start = 560; End = 575; Process Image = PIP2. Set all 8 analog inputs to 4DMU current (4-wire transmitter), Measuring Range = 4..20 mA and Interference Frequency = 60 Hz.

• Insert AI-400 6ES7 431-1KF00-0AB0 analog input module in rack 0 slot 12 (catalog - Profile Standard > SIMATIC 400\SM-400\AI-400\AI8x13Bit). Enter Inputs: Start = 576; End = 591; Process Image = PIP2. Set all 8 analog inputs to 4DMU current (4-wire transmitter), Measuring Range = 4..20 mA and Interference Frequency = 60 Hz.

• Insert AI-400 6ES7 431-1KF00-0AB0 analog input in rack 0 slot 13 (catalog - Profile Standard > SIMATIC 400\SM-400\AI-400\AI8x13Bit). Enter Inputs: Start = 592; End = 607; Process Image = PIP2. Set all 8 analog inputs to 4DMU current (4-wire transmitter), Measuring Range = 4..20 mA and Interference Frequency = 60 Hz.

• Insert AO-400 6ES7 432-1HF00-0AB0 analog output module in rack 0 slot 14 (catalog - Profile Standard > SIMATIC 400\SM-400\AO-400\AO8x13Bit).



• Enter Outputs: Start = 512; End = 527; Process Image = PIP2. There are 2 bytes (1 word) for each analog output.



• Set all 8 analog outputs to I current and Output Range = 4..20 mA.



• Insert AO-400 6ES7 432-1HF00-0AB0 analog output module in rack 0 slot 15 (catalog - Profile Standard > SIMATIC 400\SM-400\AO-400\AO8x13Bit). Enter Outputs: Start = 528; End = 543; Process Image = PIP2. There are 2 bytes (1 word) for each analog output. Set all 8 analog outputs to I current and Output Range = 4..20 mA.

• Insert AO-400 6ES7 432-1HF00-0AB0 analog output module in rack 0 slot 16 (catalog - Profile Standard > SIMATIC 400\SM-400\AO-400\AO8x13Bit). Enter Outputs: Start = 544; End = 559; Process Image = PIP2. Set all 8 analog outputs to I current and Output Range = 4..20 mA.

• Insert AO-400 6ES7 432-1HF00-0AB0 analog output module in rack 0 slot 17 (catalog - Profile Standard > SIMATIC 400\SM-400\AO-400\AO8x13Bit). Enter Outputs: Start = 560; End = 575; Process Image = PIP2. Set all 8 analog outputs to I current and Output Range = 4..20 mA.

• Insert IM 460-1 6ES7 460-1BA01-0AB0 in rack 0 slot 18 (catalog - Profile Standard > SIMATIC 400\IM-400\IM 460-1\6ES7 460-1BA01-0AB0). Click with the mouse on the position in the rack to insert (rack 0 slot18). Then double-click on the catalog item to be inserted.









• In the catalog, choose ER1 18 slots 6ES7 403-1TA00-0AA0 rack (Profile Standard > SIMATIC 400\RACK-400) and insert into the hardware (double-click on the item in the catalog).



• Insert DI-400 6ES7 421-7DHF00-0AB0 digital input module in rack 1 slot 1 (catalog - Profile Standard > SIMATIC 400\SM-400\DI-400\DI16xUI24/60V interrupt). Click with the mouse on the position in the rack to insert (rack 1 slot1). Then double-click on the catalog item to be inserted.



• Enter Inputs: Start = 0; End = 1; Process Image = PIP3. There are 2 bytes (1 bit for each digital input).



• Insert DI-400 6ES7 421-7DHF00-0AB0 digital input module in rack 1 slot 2 (catalog - Profile Standard > SIMATIC 400\SM-400\DI-400\DI16xUI24/60V interrupt). Enter Inputs: Start = 2; End = 3; Process Image = PIP3.

• Insert DI-400 6ES7 421-7DHF00-0AB0 digital input module in rack 1 slot 3 (catalog - Profile Standard > SIMATIC 400\SM-400\DI-400\DI16xUI24/60V interrupt). Enter Inputs: Start = 4; End = 5; Process Image = PIP3.

• Insert DI-400 6ES7 421-7DHF00-0AB0 digital input module in rack 1 slot 4 (catalog - Profile Standard > SIMATIC 400\SM-400\DI-400\DI16xUI24/60V interrupt). Enter Inputs: Start = 6; End = 7; Process Image = PIP3.

• Insert DI-400 6ES7 421-7DHF00-0AB0 digital input module in rack 1 slot 5 (catalog - Profile Standard > SIMATIC 400\SM-400\DI-400\DI16xUI24/60V interrupt). Enter Inputs: Start = 8; End = 9; Process Image = PIP3.

• Insert DI-400 6ES7 421-7DHF00-0AB0 digital input module in rack 1 slot 6 (catalog - Profile Standard > SIMATIC 400\SM-400\DI-400\DI16xUI24/60V interrupt). Enter Inputs: Start = 10; End = 11; Process Image = PIP3.

• Insert AI-400 6ES7 431-1KF00-0AB0 analog input module in rack 1 slot 7 (catalog - Profile Standard > SIMATIC 400\SM-400\AI-400\AI8x13Bit). Enter Inputs: Start = 608; End = 623; Process Image = PIP2. Set all 8 analog inputs to 4DMU current (4-wire transmitter), Measuring Range = 4..20 mA and Interference Frequency = 60 Hz.

• Insert AI-400 6ES7 431-1KF00-0AB0 analog input module in rack 1 slot 8 (catalog - Profile Standard > SIMATIC 400\SM-400\AI-400\AI8x13Bit). Enter Inputs: Start = 624; End = 639; Process Image = PIP2. Set all 8 analog inputs to 4DMU current (4-wire transmitter), Measuring Range = 4..20 mA and Interference Frequency = 60 Hz.

• Insert AI-400 6ES7 431-1KF00-0AB0 analog input module in rack 1 slot 9 (catalog - Profile Standard > SIMATIC 400\SM-400\AI-400\AI8x13Bit). Enter Inputs: Start = 640; End = 655; Process Image = PIP2. Set all 8 analog inputs to 4DMU current (4-wire transmitter), Measuring Range = 4..20 mA and Interference Frequency = 60 Hz.

• Insert AI-400 6ES7 431-1KF00-0AB0 analog input module in rack 1 slot 10 (catalog - Profile Standard > SIMATIC 400\SM-400\AI-400\AI8x13Bit). Enter Inputs: Start = 656; End = 671; Process Image = PIP2. Set all 8 analog inputs to 4DMU current (4-wire transmitter), Measuring Range = 4..20 mA and Interference Frequency = 60 Hz.

• Insert AI-400 6ES7 431-1KF00-0AB0 analog input module in rack 1 slot 11 (catalog - Profile Standard > SIMATIC 400\SM-400\AI-400\AI8x13Bit). Enter Inputs: Start = 672; End = 687; Process Image = PIP2. Set all 8 analog inputs to 4DMU current (4-wire transmitter), Measuring Range = 4..20 mA and Interference Frequency = 60 Hz.

• Insert DI-400 6ES7 421-7DHF00-0AB0 digital input module in rack 1 slot 14 (catalog - Profile Standard > SIMATIC 400\SM-400\DI-400\DI16xUI24/60V interrupt). Enter Inputs: Start = 12; End = 13; Process Image = PIP3.

• Insert DI-400 6ES7 421-7DHF00-0AB0 digital input module in rack 1 slot 15 (catalog - Profile Standard > SIMATIC 400\SM-400\DI-400\DI16xUI24/60V interrupt). Enter Inputs: Start = 14; End = 15; Process Image = PIP3.

• Insert IM 461-1 6ES7 461-1BA01-0AA0 in rack 1 slot 18 (catalog - Profile Standard > SIMATIC 400\IM-400\IM 461-1\6ES7 461-1BA01-0AA0). Click with the mouse on the position in the rack to insert (rack 1 slot18). Then double-click on the catalog item to be inserted.









• In the catalog, choose ER1 18 slots 6ES7 403-1TA00-0AA0 rack (Profile Standard > SIMATIC 400\RACK-400) and insert into the hardware (double-click on the item in the catalog).



• Insert DI-400 6ES7 421-7DHF00-0AB0 digital input module in rack 2 slot 1 (catalog - Profile Standard > SIMATIC 400\SM-400\DI-400\DI16xUI24/60V interrupt). Enter Inputs: Start = 16; End = 17; Process Image = PIP3.

• Insert DI-400 6ES7 421-7DHF00-0AB0 digital input module in rack 2 slot 2 (catalog - Profile Standard > SIMATIC 400\SM-400\DI-400\DI16xUI24/60V interrupt). Enter Inputs: Start = 18; End = 19; Process Image = PIP3.

• Insert DI-400 6ES7 421-7DHF00-0AB0 digital input module in rack 2 slot 3 (catalog - Profile Standard > SIMATIC 400\SM-400\DI-400\DI16xUI24/60V interrupt). Enter Inputs: Start = 20; End = 21; Process Image = PIP3.

• Insert DI-400 6ES7 421-7DHF00-0AB0 digital input module in rack 2 slot 4 (catalog - Profile Standard > SIMATIC 400\SM-400\DI-400\DI16xUI24/60V interrupt). Enter Inputs: Start = 22; End = 23; Process Image = PIP3.

• Insert DI-400 6ES7 421-7DHF00-0AB0 digital input module in rack 2 slot 5 (catalog - Profile Standard > SIMATIC 400\SM-400\DI-400\DI16xUI24/60V interrupt). Enter Inputs: Start = 24; End = 25; Process Image = PIP3.

• Insert DI-400 6ES7 421-7DHF00-0AB0 digital input module in rack 2 slot 6 (catalog - Profile Standard > SIMATIC 400\SM-400\DI-400\DI16xUI24/60V interrupt). Enter Inputs: Start = 26; End = 27; Process Image = PIP3.

• Insert DI-400 6ES7 421-7DHF00-0AB0 digital input module in rack 2 slot 7 (catalog - Profile Standard > SIMATIC 400\SM-400\DI-400\DI16xUI24/60V interrupt). Enter Inputs: Start = 28; End = 29; Process Image = PIP3.

• Insert DO-400 6ES7 422-1BH10-0AA0 digital output module in rack 2 slot 8 (catalog - Profile Standard > SIMATIC 400\SM-400\DO-400\DO16xDC 24/2A). Click with the mouse on the position in the rack to insert (rack 2 slot 8). Then double-click on the catalog item to be inserted. Enter Outputs: Start = 0; End = 1; Process Image = PIP3.



• Insert DO-400 6ES7 422-1BH10-0AA0 digital output module in rack 2 slot 9 (catalog - Profile Standard > SIMATIC 400\SM-400\DI-400\DO16xDC 24/2A). Enter Outputs: Start = 2; End = 3; Process Image = PIP3.

• Insert DO-400 6ES7 422-1BH10-0AA0 digital output module in rack 2 slot 10 (catalog - Profile Standard > SIMATIC 400\SM-400\DI-400\DO16xDC 24/2A). Enter Outputs: Start = 4; End = 5; Process Image = PIP3.

• Insert DO-400 6ES7 422-1BH10-0AA0 digital output module in rack 2 slot 11 (catalog - Profile Standard > SIMATIC 400\SM-400\DI-400\DO16xDC 24/2A). Enter Outputs: Start = 6; End = 7; Process Image = PIP3.

• Insert DI-400 6ES7 421-7DHF00-0AB0 digital input module in rack 2 slot 12 (catalog - Profile Standard > SIMATIC 400\SM-400\DI-400\DI16xUI24/60V interrupt). Enter Inputs: Start = 30; End = 31; Process Image = PIP3.

• Insert AI-400 6ES7 431-1KF00-0AB0 analog input module in rack 2 slot 13 (catalog - Profile Standard > SIMATIC 400\SM-400\AI-400\AI8x13Bit). Enter Inputs: Start = 688; End = 703; Process Image = PIP2. Set all 8 analog inputs to 4DMU current (4-wire transmitter), Measuring Range = 4..20 mA and Interference Frequency = 60 Hz.

• Insert DO-400 6ES7 422-1BH10-0AA0 digital output module in rack 2 slot 14 (catalog - Profile Standard > SIMATIC 400\SM-400\DI-400\DO16xDC 24/2A). Enter Outputs: Start = 8; End = 9; Process Image = PIP3.

• Insert AI-400 6ES7 431-1KF00-0AB0 analog input module in rack 2 slot 15 (catalog - Profile Standard > SIMATIC 400\SM-400\AI-400\AI8x13Bit). Enter Inputs: Start = 704; End = 719; Process Image = PIP2. Set all 8 analog inputs to 4DMU current (4-wire transmitter), Measuring Range = 4..20 mA and Interference Frequency = 60 Hz.

• Insert IM 461-1 6ES7 461-1BA01-0AA0 in rack 2 slot 18 (catalog - Profile Standard > SIMATIC 400\IM-400\IM 461-1\6ES7 461-1BA01-0AA0).



• Associate racks 1 and 2 with rack 0 (central rack). Open IM 460-1 module properties (rack 0 slot 18). Select rack 1 and click on the Connect button. Select rack 2 and click on the Connect button.



• Save and compile hardware (Station > Save and Compile menu item).



• Close HW Config (Station > Exit menu item).





Wiring the S7-400

Supplying Power to Modules

Power Supply Modules and Load Current Power Supplies

The modules of the S7-400 system are supplied with all the required operating voltages by a power supply module, via the backplane bus of the rack. Which power supply module you use in a rack depends on your system requirements (line voltage, current consumption of the modules used).

You must provide load voltages and currents via external load current power supplies.

The following figure shows how the individual modules of the S7-400 are supplied with current and voltage.



Interconnecting the CR and ER(s)

When you assemble an automation system comprising a CR and one or more ERs, you connect the racks via the connecting cables of the interface modules.

• Plug the male connector of the first connecting cable into one of the female connectors of the send IM and screw-tighten it.



• Plug the free end of the connecting cable into the upper male connector (receive interface) of the receive IM and screw the connector on.

• Connect the remaining receive IMs by connecting one send interface (lower female connector X2) to one receive interface (upper male connector X1) in each case.



• Plug the terminator into the lower female connector of the receive IM in the last ER of the chain.

Crushing Soy Project

Equipments

Motors

Tag Description Type
TCR0802A TCR0802A Redler Motor Direct Start
EL0803A EL0803A Elevator Motor Soft Start
EL0805A EL0805A Elevator Motor Soft Start
TCR0809 TCR0809 Redler Motor Soft Start
TCR0806 TCR0806 Redler Motor Soft Start
VT0807A_1 SP-0807A Silo Fan 1 Soft Start
RO0807A SP0807A Silo Sweeper Thread Motor Direct Start
CT0808 CT0808 Redler Motor Direct Start
VT0811A_1 SEC0811A Dryer Fan Direct Start
TCR0813 TCR0813 Redler Motor Soft Start
CT0812A CT0812A Conveyor Belt Motor Direct Start
EL1001A EL1001A Elevator Motor Soft Start
CT2501 CT2501 Conveyor Belt Motor Direct Start
TP2502 CT2502 Tripper Direct Start
CT2502 CT2502 Conveyor Belt Motor Direct Start
VT2500_1 Store 2501 Fan 1 Soft Start
VT0804A_A PL0804A Sieve Pre-separator Fan 1 Soft Start
VT0804A_B PL0804A Sieve Pre-separator Fan 2 Soft Start
AL0804A PL0804A Sieve Feeder Motor Direct Start
PN0804A PL-0804A Sieve Motor Direct Start
RO0804A PL0804A Sieven Discharge Thread Motor Direct Start
RO0901 RO0901 Thread Motor Soft Start
RO0902 RO0902 Thread Motor Direct Start
RO0903 RO0903 Thread Motor Direct Start
VC0804A CL0804A Cyclone Centrifugal Fan Direct Start
VR0804A CL0804A Cyclone Rotary Valve Direct Start
VT0815 FM0815 Bag Filter Fan Direct Start
FL0815 FM0815 Bag Filter Flute Direct Start
VR0815 FM0815 Bag Filter Rotary Valve Direct Start
EX0815 FM0815 Bag Filter Exhaust Soft Start
VR1307A Bean Heater Rotary Valve Frequency Inverter

Hardware I/O

Rack 0 Slot 8 AI8
Address Symbol Data type Comment
IW512 TCR0802A_II WORD TCR0802A Redler Motor Current
IW514 EL0803A_II WORD EL0803A Elevator Motor Current
IW516 EL0805A_II WORD EL0805A Elevator Motor Current
IW518 TCR0809_II WORD TCR0809 Redler Motor Current
IW520 TCR0806_II WORD TCR0806 Redler Motor Current
IW522 VT0807A_1_II WORD SP-0807A Silo Fan 1 Current
IW524 RO0807A_II WORD SP0807A Silo Sweeper Thread Motor Current
IW526 CT0808_II WORD CT0808 Redler Motor Current
Rack 0 Slot 9 AI8
Address Symbol Data type Comment
IW528 VT0811A_1_II WORD SEC0811A Dryer Fan Current
IW530 TCR0813_II WORD TCR0813 Redler Motor Current
IW532 CT0812A_II WORD CT0812A Conveyor Belt Motor Current
IW534 EL1001A_II WORD EL1001A Elevator Motor Current
IW536 CT2501_II WORD CT2501 Conveyor Belt Motor Current
IW538 TP2502_II WORD CT2502 Tripper Current
IW540 CT2502_II WORD CT2502 Conveyor Belt Motor Current
IW542 VT2500_1_II WORD Store 2501 Fan 1 Current
Rack 0 Slot 10 AI8
Address Symbol Data type Comment
IW544 VT0804A_A_II WORD PL0804A Sieve Pre-separator Fan 1 Current
IW546 VT0804A_B_II WORD PL0804A Sieve Pre-separator Fan 2 Current
IW548 AL0804A_II WORD PL0804A Sieve Feeder Motor Current
IW550 PN0804A_II WORD PL-0804A Sieve Motor Current
IW552 RO0804A_II WORD PL0804A Sieven Discharge Thread Motor Current
IW554 RO0901_II WORD RO0901 Thread Motor Current
IW556 RO0902_II WORD RO0902 Thread Motor Current
IW558 RO0903_II WORD RO0903 Thread Motor Current
Rack 0 Slot 11 AI8
Address Symbol Data type Comment
IW560 VC0804A_II WORD CL0804A Cyclone Centrifugal Fan Current
IW562 VR0804A_II WORD CL0804A Cyclone Rotary Valve Current
IW564 VT0815_II WORD FM0815 Bag Filter Fan Current
IW566 FL0815_II WORD FM0815 Bag Filter Flute Current
IW568 VR0815_II WORD FM0815 Bag Filter Rotary Valve Current
IW570 EX0815_II WORD FM0815 Bag Filter Exhaust Current
IW572 VR1307A_II WORD VR1307A Bean Heater Rotary Valve Current
IW574 LT1307 WORD Bean Heater Level
Rack 0 Slot 14 AO8
Address Symbol Data type Comment
QW512 VR1307A_SR WORD VR1307A Bean Heater Rotary Valve Speed Reference
Rack 1 Slot 1 DI16
Address Symbol Data type Comment
I0.0 TCR0802A_YS BOOL TCR0802A Redler Motor Status
I0.1 EL0803A_YS BOOL EL0803A Elevator Motor Status
I0.2 EL0803A_CF BOOL EL0803A Elevator Motor Fault
I0.3 EL0805A_YS BOOL EL0805A Elevator Motor Status
I0.4 EL0805A_CF BOOL EL0805A Elevator Motor Fault
I0.5 TCR0809_YS BOOL TCR0809 Redler Motor Status
I0.6 TCR0809_CF BOOL TCR0809 Redler Motor Fault
I0.7 TCR0806_YS BOOL TCR0806 Redler Motor Status
I1.0 TCR0806_CF BOOL TCR0806 Redler Motor Fault
I1.1 VT0807A_1_YS BOOL SP-0807A Silo Fan 1 Status
I1.2 VT0807A_1_CF BOOL SP-0807A Silo Fan 1 Fault
I1.3 RO0807A_YS BOOL SP0807A Silo Sweeper Thread Motor Status
I1.4 CT0808_YS BOOL CT0808 Redler Motor Status
I1.5 VT0811A_1_YS BOOL SEC0811A Dryer Fan Status
I1.6 TCR0813_YS BOOL TCR0813 Redler Motor Status
I1.7 TCR0813_CF BOOL TCR0813 Redler Motor Fault
Rack 1 Slot 2 DI16
Address Symbol Data type Comment
I2.0 CT0812A_YS BOOL CT0812A Conveyor Belt Motor Status
I2.1 EL1001A_YS BOOL EL1001A Elevator Motor Status
I2.2 EL1001A_CF BOOL EL1001A Elevator Motor Fault
I2.3 CT2501_YS BOOL CT2501 Conveyor Belt Motor Status
I2.4 CT2501_CF BOOL CT2501 Conveyor Belt Motor Fault
I2.5 TP2502_YS BOOL CT2502 Tripper Status
I2.6 CT2502_YS BOOL CT2502 Conveyor Belt Motor Status
I2.7 VT2500_1_YS BOOL Store 2501 Fan 1 Status
I3.0 VT2500_1_CF BOOL Store 2501 Fan 1 Fault
I3.1 VT0804A_A_YS BOOL PL0804A Sieve Pre-separator Fan 1 Status
I3.2 VT0804A_A_CF BOOL PL0804A Sieve Pre-separator Fan 1 Fault
I3.3 VT0804A_B_YS BOOL PL0804B Sieve Pre-separator Fan 2 Status
I3.4 VT0804A_B_CF BOOL PL0804B Sieve Pre-separator Fan 2 Fault
I3.5 AL0804A_YS BOOL PL0804A Sieve Feeder Motor Status
I3.6 PN0804A_YS BOOL PL-0804A Sieve Motor Status
I3.7 RO0804A_YS BOOL PL0804A Sieven Discharge Thread Motor Status
Rack 1 Slot 3 DI16
Address Symbol Data type Comment
I4.0 RO0901_YS BOOL RO0901 Thread Motor Status
I4.1 RO0901_CF BOOL RO0901 Thread Motor Fault
I4.2 RO0902_YS BOOL RO0902 Thread Motor Status
I4.3 RO0903_YS BOOL RO0903 Thread Motor Status
I4.4 VC0804A_YS BOOL CL0804A Cyclone Centrifugal Fan Status
I4.5 VR0804A_YS BOOL CL0804A Cyclone Rotary Valve Status
I4.6 VT0815_YS BOOL FM0815 Bag Filter Fan Status
I4.7 FL0815_YS BOOL FM0815 Bag Filter Flute Status
I5.0 VR0815_YS BOOL FM0815 Bag Filter Rotary Valve Status
I5.1 EX0815_YS BOOL FM0815 Bag Filter Exhaust Status
I5.2 EX0815_CF BOOL FM0815 Bag Filter Exhaust Fault
I5.3 MOS0803A BOOL EL0803A Motion Sensor
I5.4 MAS0803A_1 BOOL EL0803A Misalignment Sensor 1
I5.5 MAS0803A_2 BOOL EL0803A Misalignment Sensor 2
I5.6 V0804A_ZSC BOOL V0804A Valve Closed Status
I5.7 V0804A_ZSO BOOL V0804A Valve Opened Status
Rack 1 Slot 4 DI16
Address Symbol Data type Comment
I6.0 VR1307A_YS BOOL VR1307A Bean Heater Rotary Valve Status
I6.1 VR1307A_CF BOOL VR1307A Bean Heater Rotary Valve Fault
Rack 2 Slot 8 DO16
Address Symbol Data type Comment
Q0.0 TCR0802A_YC BOOL TCR0802A Redler Motor Command
Q0.1 EL0803A_YC BOOL EL0803A Elevator Motor Command
Q0.2 EL0805A_YC BOOL EL0805A Elevator Motor Command
Q0.3 TCR0809_YC BOOL TCR0809 Redler Motor Command
Q0.4 TCR0806_YC BOOL TCR0806 Redler Motor Command
Q0.5 VT0807A_1_YC BOOL SP-0807A Silo Fan 1 Command
Q0.6 RO0807A_YC BOOL SP0807A Silo Sweeper Thread Motor Command
Q0.7 CT0808_YC BOOL CT0808 Redler Motor Command
Q1.0 VT0811A_1_YC BOOL SEC0811A Dryer Fan Command
Q1.1 TCR0813_YC BOOL TCR0813 Redler Motor Command
Q1.2 CT0812A_YC BOOL CT0812A Conveyor Belt Motor Command
Q1.3 EL1001A_YC BOOL EL1001A Elevator Motor Command
Q1.4 CT2501_YC BOOL CT2501 Conveyor Belt Motor Command
Q1.5 TP2502_YC BOOL CT2502 Tripper Command
Q1.6 CT2502_YC BOOL CT2502 Conveyor Belt Motor Command
Q1.7 VT2500_1_YC BOOL Store 2501 Fan 1 Command
Rack 2 Slot 9 DO16
Address Symbol Data type Comment
Q2.0 VT0804A_A_YC BOOL PL0804A Sieve Pre-separator Fan 1 Command
Q2.1 VT0804A_B_YC BOOL PL0804B Sieve Pre-separator Fan 2 Command
Q2.2 AL0804A_YC BOOL PL0804A Sieve Feeder Motor Command
Q2.3 PN0804A_YC BOOL PL-0804A Sieve Motor Command
Q2.4 RO0804A_YC BOOL PL0804A Sieven Discharge Thread Motor Command
Q2.5 RO0901_YC BOOL RO0901 Thread Motor Command
Q2.6 RO0902_YC BOOL RO0902 Thread Motor Command
Q2.7 RO0903_YC BOOL RO0903 Thread Motor Command
Q3.0 VC0804A_YC BOOL CL0804A Cyclone Centrifugal Fan Command
Q3.1 VR0804A_YC BOOL CL0804A Cyclone Rotary Valve Command
Q3.2 VT0815_YC BOOL FM0815 Bag Filter Fan Command
Q3.3 FL0815_YC BOOL FM0815 Bag Filter Flute Command
Q3.4 VR0815_YC BOOL FM0815 Bag Filter Rotary Valve Command
Q3.5 EX0815_YC BOOL FM0815 Bag Filter Exhaust Command
Q3.6 V0804A_XV BOOL V0804A Valve Command
Q3.7 VR1307A_YC BOOL VR1307A Bean Heater Rotary Valve Command

• Edit symbols - enter description of all I/O channels.



You can enter all the symbols in the Crushing Soy project one by one or import the symbols at once. Below the Symbols Table is the option to import symbols. Request the import file (ASCII format).

Click here to download the file with the symbols table

Symbols Table

All symbols of an AS can be seen in Symbols (Factory_Prj > AS01 > CPU 416-3 DP > S7 Program(1) > Symbols).



The Symbols table can be exported (Symbol Table menu > Export ...) and new symbols can be imported (Symbol Table menu > Import...). The image below shows the file import in ASCII format with new symbols.



ASCII file with I/O symbols from the Crushing Soy project.




S7-400

The S7-400 is the most powerful PLC in the SIMATIC controller family.

The S7-400 is an automation platform for system solutions in production and process engineering, and is primarily characterized by its modularity and performance reserves.

S7-400

• Power PLC for medium to high end performance ranges.

• Solution for the most demanding tasks.

• With a comprehensive range of modules and CPUs with adequate performance for optimal adaptation to the automation task.

• Flexible in use through simple implementation of distributed structures.

• Friendly connections.

• Great communication and networking options.

• Easy-to-use handling and simple design.

• It can be expanded without problems when tasks increase.

• Multicomputing: simultaneous operation of multiple CPUs on an S7-400 central controller. Multicomputing distributes the overall performance power of an S7-400. For example, complex tasks can be broken down into technologies such as open-loop control, computing or communication, and assigned to different CPUs. And every CPU can receive its own local I/O.

• Modularity: The S7-400's powerful backplane bus and communication interfaces that can be directly connected to the CPU enable high-performance operation of a series of communication lines. This allows, for example, to split into a communication path for HMI and programming tasks, one for equidistant and high-performance motion control components and one for a "normal" I/O fieldbus. In addition, the necessary connections to MES/ERP systems or to the Internet can also be implemented.

• Engineering and diagnostics: The S7-400 is configured and programmed extremely efficiently in conjunction with SIMATIC engineering tools, especially in the case of extensive automation solutions with a high engineering component. For this purpose, for example, high-level languages such as SCL and graphical engineering tools for sequential controls, state graphics programs and technology-oriented diagrams are available.


S7-400 Installation

An S7-400 programmable controller consists of a central rack (CR) and one or more expansion racks (ERs), as required. You can add ERs to compensate for lack of slots for your application or operate signal modules at remote locations (e.g. in the immediate vicinity of your process).

When using ERs, you need interface modules (IMs) as well as the additional racks, and additional power supply modules if necessary. When using interface modules, you must always use the appropriate partners: you insert a send IM in the CR, and the matching receive IM in each connected ER.


Central Rack (CR) and Expansion Rack (ER)

The rack containing the CPU is known as the central rack (CR). The racks containing modules in the system and connected to the CR are the expansion racks (ERs).



Connecting the CR and ER(s)

To connect one or more ERs to a CR, you must fit one or more send IMs in the CR. The send IMs have two interfaces. You can connect one chain of up to four ERs to each of the two interfaces of a send IM in the CR. Different IMs are available for local connection and remote connection.


Connecting with a 5V Supply

For a local connection with the IM 460-1 and IM 461-1, the 5 V supply voltage is also transferred via the interface modules. There must therefore be no power supply module inserted in an ER connected to an IM 460-1/IM 461-1.

Up to 5 A may flow through each of the two interfaces of an IM 460-1. This means that each ER connected via an IM 460-1/461-1 can be powered with a maximum of 5 A at 5 V.

Observe the connection rules.

Item Local Connection Remote Connection
Send IM 460-0 460-1 460-3 460-4
Receive IM 461-0 461-1 461-3 461-4
Max. number of connectable EMs per chain 4 1 4 4
Max. distance 5 m 1.5 m 102.15 m 605 m
5 V transfer No Yes No No
Max. current transfer per interface - 5 A - -
Communication bus transmission Yes No Yes No

Ways of Connecting Central and Expansion Racks



Installing the Central Rack (CR) and Expansion Rack (ER)

The racks of the S7-400 system form the basic framework which accepts the individual modules. The modules exchange data and signals and are powered via the backplane bus. The racks are designed for wall mounting, for mounting on rails, and for installation in frames and cabinets.

Racks in the S7-400 System

Racks Slots Available Buses Application Characteristics
UR1 18 I/O bus, Communication bus CR ou ER Rack for all module types in the S7 400
UR2 9 I/O bus, Communication bus CR ou ER Rack for all module types in the S7 400
ER1 18 Restricted I/O bus ERs Racks for signal modules (SMs), receive IMs, and all power supply modules. The I/O bus has the following restrictions: Interrupts from modules have no effect because no interrupt lines exist; Modules are not supplied with 24 V, ER2 9 Restricted I/O bus ERs Modules are not supplied with 24 V, i.e. modules requiring 24 V cannot be used; Modules are neither backed up by the battery in the power supply module nor by the voltage applied externally to the CPU or receive IM (EXT.BATT. socket).
ER2 9 Restricted I/O bus ERs Racks for signal modules (SMs), receive IMs, and all power supply modules. The I/O bus has the following restrictions: Interrupts from modules have no effect because no interrupt lines exist; Modules are not supplied with 24 V, ER2 9 Restricted I/O bus ERs Modules are not supplied with 24 V, i.e. modules requiring 24 V cannot be used; Modules are neither backed up by the battery in the power supply module nor by the voltage applied externally to the CPU or receive IM (EXT.BATT. socket).
CR2 18 I/O bus, segmented Communication bus, continuos Segmented CR Rack for all module types in the S7-400 except receive IMs. The I/O bus is subdivided into 2 I/O bus segments of 10 and 8 slots respectively.
CR3 4 I/O bus, Communication bus CR in stardard systems Racks for all S7-400 module types except receive IMs. CPUs 41x-H only in stand-alone operation.
UR2-H 2*9 I/O bus, segmented Communication bus, segmenteds Subdivided CR or ER for compact installation of a fault-tolerant system Rack for all S7-400 modules except send IMs. The I/O bus and communication bus are divided into 2 bus segments, each with 9 slots.

Electrical Supply

The modules inserted in the rack are supplied with the required operating voltages (5 V for logic, 24 V for interfaces) via the backplane bus and base connector, by the power supply module fitted in the slot on the extreme left in the rack.

For local connections, ERs can also be supplied with power via the IM 460-1/IM 461-1 interface modules.

5 A may flow through each of the two interfaces of a send IM 460-1, meaning each ER in a local connection can be supplied with up to 5 A.


I/O Bus

The I/O bus is a parallel backplane bus designed for the fast interchange of I/O signals. Each rack has an I/O bus. Time-critical operations to access the process data of the signal modules take place via the I/O bus.


Communication Bus (C Bus)

The communication bus (C bus) is a serial backplane bus designed for the fast exchange of large volumes of data parallel to the I/O signals. Except for racks ER1 and ER2, each rack has a communication bus.


Rack with I/O Bus and Communication Bus

The following figure shows a rack with an I/O bus and a communication bus. The I/O bus connector and communication bus connector can be seen at each slot. When the rack is delivered, these connectors are protected by a cover.




Segmented CR

The “segmented” characteristic relates to the configuration of the CR. In the (non-segmented) CR the I/O bus is continuous and interconnects all 18 or 9 slots; in the segmented CR, however, the I/O bus consists of two I/O bus segments.

A segmented CR has the following important characteristics:

• The communication bus is continuous (global), whilst the I/O bus is divided into two I/O bus segments of 10 and 8 slots respectively.

• One CPU can be inserted per local bus segment.

• The two CPUs in a segmented CR may be in different operating states.

• The two CPUs can communicate with each other via the communication bus.

• All the modules inserted in a segmented CR are powered by the power supply module at slot 1.

• Both segments have a common backup battery.

The following image shows a segmented CR with divided I/O bus and continuous communication bus.



Subdivided CR

The “subdivided” characteristic relates to the configuration of the CR. In the (non-divided) CR the I/O bus and communication bus are continuous and interconnect all the slots; in the subdivided CR, however, the I/O bus and communication bus consist of two segments each. The UR2-H rack used here functions as two electrically isolated UR2 racks on the same rack profile.

A subdivided CR has the following important characteristics:

• The communication bus and I/O bus are subdivided into two segments with 9 slots each.

• Each segment represents a self-contained CR.

The following figure shows a divided CR with a divided I/O bus and communication bus.



Arrangement of the Modules

You only need to observe two rules for rack mounting of the modules:

• In all racks, the power supply module must always be inserted on the extreme left (beginning with slot 1). In the UR2-H from slot 1 in both segments.

• The receive IM in the ER must always be inserted on the extreme right. In the UR2-H at slot 9 once per segment.


Space Requirement of the Racks

In the S7-400 system, there are modules occupying one, two, or three slots (width 25, 50, or 75 mm).


Accessories

Some of the accessories needed for fitting the modules in the rack are provided in the packaging of the modules and racks. The front connectors of the signal modules must always be ordered separately. There are also optional accessories for some modules.

Accessories for Modules and Racks

Module Accessories Supplied Accessories Not Supplied Purpose of the Accessory
Rack (UR, CR, ER) Number wheel with slot labels - For identifying the modules with slot labels
Power Supply Module (PS) - 1 or 2 backup batteries For central backup of RAM areas in the CPU
CPU - Memory cards Load memories required for the CPU
Signal Module (SM) 2 labels - For labeling the inputs and outputs on the front connector
Signal Module (SM) Plate with pinout - To identify the pinout of the front connectors
Signal Module (SM) - Front connector with strain relief for screw, crimp or spring-type termina For wiring the SMs
Signal Module (SM) - Extraction tool (for crimp terminals) For rewiring SMs with a front connector with crimp terminals
Signal Module (SM) - Crimp contacts
Signal Module (SM) - Crimping tool

Next

Unregistered user. Buy the training at jats.com.br.